lunes, 10 de octubre de 2011

Ley de Hooke

LEY DE HOOKE


Cuando una fuerza externa actúa sobre un material causa un esfuerzo o tensión en el interior del material que provoca la deformación del mismo. En muchos materiales, entre ellos los metales y los minerales, la deformación es directamente proporcional al esfuerzo. No obstante, si la fuerza externa supera un determinado valor, el material puede quedar deformado permanentemente, y la ley de Hooke ya no es válida. El máximo esfuerzo que un material puede soportar antes de quedar permanentemente deformado se denomina límite de elasticidad.

'Ley de Hooke'

Cuando un objeto de somete a fuerzas externas, sufre cambios de tamaño o de forma, o de ambos. Esos cambios dependen del arreglo de los átomos y su enlace en el material. Cuando un peso jala y estira a otro y cuando sele quita este peso y regresa a su tamaño normal decimos que es un cuerpo elástico.

Elasticidad: Propiedad de cambiar de forma cuando actúa una fuerza de deformación sobre un objeto, y el objeto regresa a su forma original cuando cesa la deformación.

Ley de Hooke para los resortes
La forma más común de representar matemáticamente la Ley de Hooke es mediante la ecuación del muelle o resorte, donde se relaciona la fuerza F ejercida sobre el resorte con la elongación o alargamiento δ producido:
F = -k\delta \,
donde k se llama constante elástica del resorte y  \delta\, es su elongación o variación que experimenta su longitud.
La energía de deformación o energía potencial elástica Uk asociada al estiramiento del resorte viene dada por la siguiente ecuación:
U_k=\frac{1}{2} k{\delta}^2
Es importante notar que la k antes definida depende de la longitud del muelle y de su constitución. Definiremos ahora una constante intrínseca del resorte independiente de la longitud de este y estableceremos así la ley diferencial constitutiva de un muelle. Multiplicando k por la longitud total, y llamando al producto k_i\, o k\, intrínseca, se tiene:
k=\frac{k_i}{L}
Llamaremos F(x)\, a la tensión en una sección del muelle situada una distancia x de uno de sus extremos que tomamos como origen de coordenadas, kΔx a la constante de un pequeño trozo de muelle de longitud Δx a la misma distancia y δΔx al alargamiento de ese pequeño trozo en virtud de la aplicación de la fuerza F(x). Por la ley del muelle completo:
F(x)=-k_{\Delta x}\delta_{\Delta x}=-k_i\frac{\delta_{\Delta x}}{\Delta x}
Tomando el límite:
F(x)=-k_i\frac{{\delta}_{dx}}{dx}
que por el principio de superposición resulta:
F\left(x\right)=-k_i\frac{d{\delta}}{dx}=-AE\frac{d\delta}{dx}
Que es la ecuación diferencial del muelle. Si se integra para todo x, de obtiene como ecuación de onda unidimensional que describe los fenómenos ondulatorios
c=\sqrt{\frac{E}{\rho}}

 




No hay comentarios:

Publicar un comentario