LEY DE HOOKE
Cuando una fuerza externa actúa sobre un material causa un esfuerzo o tensión en el interior del material que provoca la deformación del mismo. En muchos materiales, entre ellos los metales y los minerales, la deformación es directamente proporcional al esfuerzo. No obstante, si la fuerza externa supera un determinado valor, el material puede quedar deformado permanentemente, y la ley de Hooke ya no es válida. El máximo esfuerzo que un material puede soportar antes de quedar permanentemente deformado se denomina límite de elasticidad.Cuando un objeto de somete a fuerzas externas, sufre cambios de tamaño o de forma, o de ambos. Esos cambios dependen del arreglo de los átomos y su enlace en el material. Cuando un peso jala y estira a otro y cuando sele quita este peso y regresa a su tamaño normal decimos que es un cuerpo elástico.
Elasticidad: Propiedad de cambiar de forma cuando actúa una fuerza de deformación sobre un objeto, y el objeto regresa a su forma original cuando cesa la deformación.
Ley de Hooke para los resortes
La forma más común de representar matemáticamente la Ley de Hooke es mediante la ecuación del muelle o resorte, donde se relaciona la fuerza F ejercida sobre el resorte con la elongación o alargamiento δ producido:donde k se llama constante elástica del resorte y es su elongación o variación que experimenta su longitud.
La energía de deformación o energía potencial elástica Uk asociada al estiramiento del resorte viene dada por la siguiente ecuación:
Es importante notar que la k antes definida depende de la longitud del muelle y de su constitución. Definiremos ahora una constante intrínseca del resorte independiente de la longitud de este y estableceremos así la ley diferencial constitutiva de un muelle. Multiplicando k por la longitud total, y llamando al producto o intrínseca, se tiene:
Llamaremos a la tensión en una sección del muelle situada una distancia x de uno de sus extremos que tomamos como origen de coordenadas, kΔx a la constante de un pequeño trozo de muelle de longitud Δx a la misma distancia y δΔx al alargamiento de ese pequeño trozo en virtud de la aplicación de la fuerza F(x). Por la ley del muelle completo:
Tomando el límite:
que por el principio de superposición resulta:
Que es la ecuación diferencial del muelle. Si se integra para todo x, de obtiene como ecuación de onda unidimensional que describe los fenómenos ondulatorios
No hay comentarios:
Publicar un comentario